## 3 (Sem-5) MAT M 5

## 2014

## MATHEMATICS <br> ( Major ) <br> Paper : 5.5

## (Probability )

Full Marks : 60
Time: 3 hours
The figures in the margin indicate full marks
for the questions

1. Answer the following questions :
$1 \times 7=7$
(a) Write the sample space for the experiment of tossing a coin three times in succession or tossing three coins at a time.
(b) What conclusion one can make about the conditional probability $P(A \mid B)$ if $P(B)=0$ ?
(c) Mention two properties which must be satisfied by the probability density function $f(x)$ of a continuous random variable $X$.
(d) State the multiplication theorem of expectation.
(e) State the relationship between the moment generating function of the sum of a number of independent random variables and the moment generating function of these individual random variables.
(f) If $X$ is a random variable and $a, b$ are constants, then express variance of $(a X+b)$ in terms of variance of $X$.
(g) Mention the relationship between the mean, median and mode of the normal distribution.
2. Answer the following questions :
(a) Show that probability of any impossible event is zero.
(b) If $F$ is the distribution function of a random variable $X$ and $a<b$, then show that

$$
P(a<X \leq b)=F(b)-F(a)
$$

(c) If $X$ and $Y$ are two random variables, then show that

$$
\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

(d) If the random variable $X$ follows binomial distribution with parameters $n$ and $p$, then show that

$$
E(X)=n p
$$

3. Answer any three parts from the following :

$$
5 \times 3=15
$$

(a) If $A$ and $B$ are independent events, then show that $\bar{A}$ and $\bar{B}$ are also independent events.
(b) A bag contains 6 white and 9 black balls. Four balls are drawn at a time. Find the probability for the first draw to give 4 white and the second to give 4 black balls if the balls drawn in the first draw are not replaced before the second draw.
(c) A random variable $X$ has the following probability function. Values of $X$ -

| $x$ | $:$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $p(x)$ | $:$ | 0 | $K$ | $2 K$ | $2 K$ | $3 K$ | $K^{2}$ | $2 K^{2}$ | $7 K^{2}+K$ |

Find $K$ and also evaluate

$$
P(X<6), P(X \geq 6) \text { and } P(0<X<5)
$$

(d) A coin is tossed until a head appears. What is the expectation of the number of tosses required?
4. Answer any three parts from the following :

$$
10 \times 3=30
$$

(a) (i) A probability curve $y=f(x)$ has a range from 0 to $\infty$. If $f(x)=e^{-x}$, find the mean and variance.
(ii) Let $X$ be a continuous random variate with probability density function

$$
\begin{aligned}
f(x) & =a x, & & 0 \leq x \leq 1 \\
& =a, & & 1 \leq x \leq 2 \\
& =-a x+3 a, & & 2 \leq x \leq 3 \\
& =0, & & \text { elsewhere }
\end{aligned}
$$

Compute $P(X \leq 1 \cdot 5)$.
(b) (i) Show that expected value of $X$ is equal to the expectation of the conditional expectation of $X$ given $Y$ i.e., $E(X)=E[E(X \mid Y)]$.
(ii) Discuss the effect of change of origin and scale on moment generating functions.
(c) (i) The mean and variance of a binomial distribution are 4 and $\frac{4}{3}$ respectively. Find $P(X \geq 1)$.
(ii) Ten coins are thrown simultaneously. Use binomial distribution to find the probability of getting at least seven heads.
(d) (i) Show that the mean and variance of the Poisson distribution are equal.
(ii) Write the probability density function of a random variable $X$ which follows Normal distribution with mean $\mu$ and variance $\sigma^{2}$. What is a standard normal variate? Find its mean and variance.

