2014

MATHEMATICS

(Major)

Paper: 5.3

(Spherical Trigonometry and Astronomy)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer all the questions:

 $1\times7=7$

- (a) Why the motion of a planet relative to the sun is called two-body problem?
- (b) Just mention how a spherical triangle is formed.
- (c) Describe why lunar eclipse does not occur in every month at the time of full moon.
- (d) What do you mean by circumpolar star?
- (e) What is the difference between terrestrial and celestial longitudes and latitudes?

- (f) Explain, whether refraction increases or decreases the zenith distance of a star. Give reasons.
- (g) What is the relation between spherical and polar triangles?
- 2. Answer all the questions:

 $2 \times 4 = 8$

- (a) Show that the section of a sphere by a plane is a circle.
- (b) What do you mean by geocentric and annual parallaxes of a star?
- (c) Discuss the effect of refraction on sunrise.
- (d) Discuss how the coordinates—right ascension and declination of a star in celestial sphere are measured.
- **3.** Answer any *three* from the following: $5 \times 3 = 15$
 - (a) Spell out five parts for a spherical triangle and prove that
 - sine (middle) = product of the tangents of the adjacents ($C = 90^{\circ}$)
 - (b) Show that the velocity of a planet in its elliptic orbit is

$$v^2 = \mu \left(\frac{2}{r} - \frac{1}{a}\right)$$

where $\mu = G(M + m)$ and α is the semimajor axis of the orbit. (c) Show that the time interval between the middle of a lunar eclipse and the time of opposition is

$$\frac{p\lambda}{(m-s)^2+p^2}$$
 hrs (approx)

where m and s are the hourly motions in longitude of the moon and the sun respectively, p is the hourly motion of the moon in latitude and λ is the moon's latitude at the instant of opposition.

(d) If a is the sun's altitude in the prime vertical at a place in latitude ϕ and L is its longitude, prove that

$$\phi = \sin^{-1} (\sin L \sin \varepsilon \csc a)$$

- (e) If ψ is the angle which a star makes at rising with the horizon, prove that $\cos \psi = \sin \phi \sec \delta$, where the symbols have their usual meanings.
- **4.** In a spherical triangle, prove that $\cos a \cos C = \sin a \cot b \sin C \cot B$

Also, in a spherical triangle if $b+c=\pi$, prove that $\sin 2B + \sin 2C = 0$. 6+4=10

5. State the Kepler's laws of planetary motion.

Hence deduce the Kepler's laws from the

Newton's single law of gravitation. 3+7=10

Or

What do you mean by refraction of a star? Discuss the effect of refraction on RA and declination of a star.

10

6. Show that the minimum angular distance D_0 of the moon and the sun for occurrence of solar eclipse should be $D_0 = \beta \cos j$ where

$$\tan j = \frac{\tan i}{1 - m}$$

the other symbols carry the usual meanings.

10

Or

What do you mean by equatorial horizontal parallax of a star?

Determine the geocentric parallax in right ascension and declination taking the earth as spheroid. 3+7=10

* * *