2015

PHYSICS

(Major)

Theory Paper: M-4.2

Full Marks - 60

Time $-2\frac{1}{2}$ hours

The figures in the margin indicate full marks for the questions.

GROUP - A

(Wave Optics)

- 1. Answer the following questions: $1 \times 4=4$
 - (a) What becomes of energy of light waves whose destructive influence leads to dark fringes in interference pattern?
 - (b) From Stoke's law, establish the relation r = -r'
 - (c) Define specific rotation for an optically active solution.
 - (d) What do you mean by grating element and corresponding points?

- 2. (a) Why do we see colours when white light falls on a thin film of transparent medium?

 Explain. 2
 - (b) A slit is situated at a distance of 9 cm from the Fresnel's biprism. Each angle of the prism is 2° and the refractive index of materials of prism is 1.5. Calculate the fringe-width when the eyepiece is placed at a distance of 91 cm from the biprism and the wavelength of light is 6280 Å.
 - (c) Explain double refraction and optic axis. 1+1=2
- 3. Answer any *two* questions of the following : $5 \times 2 = 10$
 - (a) Monochromatic light coming from two coherent sources interfere at any point P(y,x) in XY plane. Show that interference fringes are hyperbolic in general.
 - (b) Derive the mathematical expression of resultant intensity of the beam suffering Fraunhoffer diffraction in single slit. 5
 - light is quarter wave plate? Plane polarised light is normally incident on a quarter wave plate. State the condition under which circularly and elliptically polarised light can be obtained.

 1+2+2=5

(2)

- 4. Answer any *two* questions of the following: $10 \times 2 = 20$
 - (a) (i) Sustained interference is not possible without co-herent sources. Explain two interference beams have intensities 9:4. Calculate the ratio of maximum and minimum intensities produced. 2+3=5
 - (ii) Find an expression for resolving power of a plane transmission grating in terms of grating constant and wave length of light.
 - (b) (i) Give the theory of the formation of the spectra of the various order on the Rowland circle by a concave grating.
 - (ii) Show from Brewster's law that when light is incident on a transparent substance at the polarizing angle, the reflected and refracted rays are at right angle to each other.
 - (c) (i) Describe in detail how the wavelength of monochromatic light can be determined with the help of Fresnel's bi-prism.

(3)

(ii) Write a short note on zone plate and its lensing property. 5

GROUP - B

(Special Theory of Relativity)

Answer any two questions.

- 5. (a) Write the Lorentz transformation equations for space and time. On the basis of these equations how could you justify that space and time are inter connected with each other?

 3+2=5
 - (b) A light source with frequency γ_0 is approaching an observer at rest. If the velocity of the source is ν , show that the effective frequency, measured by the observer is

$$\gamma = \gamma_0 \sqrt{\frac{\left(1 + \frac{v}{c}\right)}{\left(1 - \frac{v}{c}\right)}}$$

6. (a) (i) Establish the Relativistic Energy and momentum relation

$$E = \sqrt{m^2c^4 + p^2c^2}$$

(ii) Show that a particle with zero rest mass must travel at the speed of light in vacuum.

2500(G)

- (b) Describe Twin Paradox of special theory of Relativity.5
- 7. (a) (i) Show that four-dimensional volume element dx dy dz dt is invariant under Lorentz transformation. 2
 - (ii) In the laboratory the life-time of a particle moving with speed 2.8×10^{10} cm/sec is found to be 2.5×10^{-7} sec. Calculate the proper life-time of the particle.
 - (b) Establish length contraction as a consequence of Lorentz transformations. 5

(5)