3 (Sem-2) PHY M 1

2014

PHYSICS

(Major)
Paper: 2.1
Full Marks: 60
Time: $2^{1 / 2}$ hours
The figures in the margin indicate full marks for the questions

GROUP-A

(Mathematical Methods II)

(Marks : 35)

1. Answer the following questions : $\quad 1 \times 4=4$
(a) If $\vec{R}(u)=\frac{d}{d u} \vec{S}(u)$, find $\int_{a}^{b} \vec{R}(u) d u$.
(b) If the surface integral of \vec{A} over a closed surface S vanishes, evaluate $\vec{\nabla} \cdot \vec{A}$.
(c) Write the transformation equations between Cartesian coordinates and spherical coordinates.
(d) Give the graphical representation of the Dirac delta function $\delta\left(x-x_{0}\right)$.
2. Answer the following questions : $\quad 2 \times 3=6$
(a) If $\vec{E}=-\vec{\nabla} \phi$, evaluate $\oint_{C} \vec{E} \cdot d \vec{r}$, where ϕ is a scalar function of r.
(b) Show that

$$
\int_{V}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d V=\int_{S}(\phi \vec{\nabla} \psi-\psi \vec{\nabla} \phi) d \vec{S}
$$

(c) For an orthogonal curvilinear coordinate systems, show that

$$
\hat{e}_{2}=h_{3} h_{1} \vec{\nabla} u_{3} \times \vec{\nabla} u_{1}
$$

where symbols stand for usual meanings.
3. Using Green's theorem in plane, find

$$
\oint_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]
$$

where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.

A fluid of density $\rho(x, y, z, t)$ moves with velocity $\vec{v}(x, y, z, t)$. If there is neither any source nor any sink, using divergence theorem, show that

$$
\vec{\nabla} \cdot(\rho \vec{v})+\frac{\partial \rho}{\partial t}=0
$$

4. Answer either (a) or $[(b)$ and $(c)]$:

Either
(a) Prove that

$$
\oint_{C} \vec{A} \cdot d \vec{\lambda}=\int_{S}(\vec{\nabla} \times \vec{A}) \cdot d \vec{S}
$$

where C is the curve bounding the surface S. Hence find $\oint \vec{r} \cdot d \vec{r}$.

Or

(b) Express $\vec{\nabla} \phi$ in the orthogonal curvilinear coordinate system.
(c) Find $\Gamma\left(-\frac{5}{2}\right)$ provided $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
5. Answer either $[(a)$ and $(b)]$ or $[(c)$ and $(d)]$:

Either

(a) Prove that

$$
\int_{V}(\vec{\nabla} \times \vec{B}) d V=\int_{S}(\hat{n} \times \vec{B}) d S
$$

Where V is the volume enclosed by the surface S and \hat{n} is the unit normal vector to the plane of $d S$.
(b) Show that

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \delta(a-x) \delta(b-x) d x=\delta(a-b) \tag{4}
\end{equation*}
$$

Or
(c) Define Gamma function and establish

$$
\Gamma(n+1)=n \Gamma(n) \quad 1+4=5
$$

(d) Find the square of the elemental length in cylindrical coordinates and determine the corresponding scale factors. $4+1=5$

Group-B

(Properties of Matter)

(Marks : 25)
6. Answer the following questions :
(a) Draw the stress-strain graph indicating the proportional limit and the yield point.
(b) State the principle on which the action of the split tip of a fountain pen's nib is based.
(c) A body is being moved horizontally through a viscous medium. What is the angle between the viscous force on the body and its weight?
7. Find the maximum length of a wire that can be suspended without breaking. Given that its breaking stress and density are $7.2 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$ and $7.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
8. Answer any two of the following questions :

$$
5 \times 2=10
$$

(a) A body is subjected to a stress. Show that the potential energy stored in the unit volume of the body is

$$
\frac{1}{2} \times \text { stress } \times \text { strain }
$$

(b) Find an expression for an excess pressure at a point on a curved liquid surface. Hence find the excess pressure for a spherical soap bubble.
(c) A particle of mass m is moving through a viscous medium. If the viscous force varies linearly with instantaneous velocity v, find the expression for v as a function of time t. The initial velocity is v_{0}.
9. Answer either [(a) and (b)] or [(c) and (d)] of the following questions :

Either
(a) Derive an expression for the twisting couple per unit twist of a rod of the length l, the radius r and the rigidity modulus η fixed at one end.
(b) Calculate the terminal velocity of an air bubble of radius $10^{-5} \mathrm{~m}$ rising in water of viscosity $10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$. Density of water is $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and that of air is negligible.

Or
(c) Derive the relation

$$
Y=3 K(1-2 \sigma)
$$

where Y, K and σ are Young's modulus, bulk modulus and Poisson's ratio respectively.
(d) Calculate the work done against surface tension in blowing a soap bubble from a radius of 10 cm to 20 cm , if the surface tension is $25 \times 10^{-3} \mathrm{~N} / \mathrm{m}$.

